Probabilistic Sentential Decision Diagrams:Learning with Massive Logical Constraints

نویسندگان

  • Doga Kisa
  • Guy Van den Broeck
  • Arthur Choi
  • Adnan Darwiche
چکیده

We propose the Probabilistic Sentential Decision Diagram (PSDD): A complete and canonical representation of probability distributions defined over the models of a given propositional theory. Each parameter of a PSDD can be viewed as the (conditional) probability of making a decision in a corresponding Sentential Decision Diagram (SDD). The SDD itself is a recently proposed complete and canonical representation of propositional theories. PSDDs are tractable representations, and further, the parameters of a PSDD can be efficiently estimated, in closed form, from complete data. We empirically evaluate the quality of PSDDs learned from data, when we have knowledge, a priori, of the domain logical constraints.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Sentential Decision Diagrams

We propose the Probabilistic Sentential Decision Diagram (PSDD): A complete and canonical representation of probability distributions defined over the models of a given propositional theory. Each parameter of a PSDD can be viewed as the (conditional) probability of making a decision in a corresponding Sentential Decision Diagram (SDD). The SDD itself is a recently proposed complete and canonica...

متن کامل

Learning the Structure of Probabilistic Sentential Decision Diagrams

The probabilistic sentential decision diagram (PSDD) was recently introduced as a tractable representation of probability distributions that are subject to logical constraints. Meanwhile, efforts in tractable learning achieved great success inducing complex joint distributions from data without constraints, while guaranteeing efficient exact probabilistic inference; for instance by learning ari...

متن کامل

Probability Distributions over Structured Spaces

Our goal is to develop general-purpose techniques for probabilistic reasoning and learning in structured spaces. These spaces are characterized by complex logical constraints on what constitutes a possible world. We propose a tractable formalism, called probabilistic sentential decision diagrams, and show it effectively learns structured probability distributions in two applications: product co...

متن کامل

Tractable Learning for Structured Probability Spaces: A Case Study in Learning Preference Distributions

Probabilistic sentential decision diagrams (PSDDs) are a tractable representation of structured probability spaces, which are characterized by complex logical constraints on what constitutes a possible world. We develop general-purpose techniques for probabilistic reasoning and learning with PSDDs, allowing one to compute the probabilities of arbitrary logical formulas and to learn PSDDs from i...

متن کامل

Support vector regression with random output variable and probabilistic constraints

Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014